X^2+(x+1)(x+1)+(x+2)(x+2)=302

Simple and best practice solution for X^2+(x+1)(x+1)+(x+2)(x+2)=302 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for X^2+(x+1)(x+1)+(x+2)(x+2)=302 equation:



X^2+(X+1)(X+1)+(X+2)(X+2)=302
We move all terms to the left:
X^2+(X+1)(X+1)+(X+2)(X+2)-(302)=0
We multiply parentheses ..
X^2+(+X^2+X+X+1)+(X+2)(X+2)-302=0
We get rid of parentheses
X^2+X^2+X+X+(X+2)(X+2)+1-302=0
We multiply parentheses ..
X^2+X^2+(+X^2+2X+2X+4)+X+X+1-302=0
We add all the numbers together, and all the variables
2X^2+(+X^2+2X+2X+4)+2X-301=0
We get rid of parentheses
2X^2+X^2+2X+2X+2X+4-301=0
We add all the numbers together, and all the variables
3X^2+6X-297=0
a = 3; b = 6; c = -297;
Δ = b2-4ac
Δ = 62-4·3·(-297)
Δ = 3600
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$X_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$X_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

$\sqrt{\Delta}=\sqrt{3600}=60$
$X_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(6)-60}{2*3}=\frac{-66}{6} =-11 $
$X_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(6)+60}{2*3}=\frac{54}{6} =9 $

See similar equations:

| 2x+5-7=180 | | 6t+8=17 | | y+20=80+.5y | | (2v+3)(6-v)=0 | | N+4=3x7 | | 3+x+2x-3=90 | | 150+20(8)=x | | 5t=8t | | 500-30(8)=x | | 500-30(8)=x=290 | | z/16=18 | | (2•x)+14=36 | | 2t-12=4 | | 4t=t2 | | 5x+3-3=7x-4 | | 6z+5=6z | | 3h^2–32h–11=0 | | T+5/5+3t=4 | | -7t+8=-7t | | 2(x-2)=(5x+3)4 | | 8-3x=2x+33 | | 18+3•x=24 | | 2-7t=58+t | | (3•6)+(3•x)=24 | | 4-5x=11x | | 3•6+3•x=24 | | 7-2x=12x | | 3(c+2)=5(c+1)=-7 | | (13x+7)+(6x+21)=180 | | 2(c+2)=5(c+1)=-7 | | 9=k(7) | | (13x+7)=(6x+21) |

Equations solver categories